Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Nat Commun ; 13(1): 5814, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2050372

RESUMEN

Monoclonal antibodies are a promising approach to treat COVID-19, however the emergence of SARS-CoV-2 variants has challenged the efficacy and future of these therapies. Antibody cocktails are being employed to mitigate these challenges, but neutralization escape remains a major challenge and alternative strategies are needed. Here we present two anti-SARS-CoV-2 spike binding antibodies, one Class 1 and one Class 4, selected from our non-immune human single-chain variable fragment (scFv) phage library, that are engineered into four, fully-human IgG-like bispecific antibodies (BsAb). Prophylaxis of hACE2 mice and post-infection treatment of golden hamsters demonstrates the efficacy of the monospecific antibodies against the original Wuhan strain, while promising in vitro results with the BsAbs demonstrate enhanced binding and distinct synergistic effects on neutralizing activity against circulating variants of concern. In particular, one BsAb engineered in a tandem scFv-Fc configuration shows synergistic neutralization activity against several variants of concern including B.1.617.2. This work provides evidence that synergistic neutralization can be achieved using a BsAb scaffold, and serves as a foundation for the future development of broadly reactive BsAbs against emerging variants of concern.


Asunto(s)
Anticuerpos Biespecíficos , COVID-19 , Anticuerpos de Cadena Única , Animales , Anticuerpos Biespecíficos/genética , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales/uso terapéutico , Cricetinae , Humanos , Inmunoglobulina G/genética , Ratones , Pruebas de Neutralización , SARS-CoV-2/genética , Anticuerpos de Cadena Única/genética , Glicoproteína de la Espiga del Coronavirus/genética
2.
Curr Opin Immunol ; 77: 102209, 2022 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1857941

RESUMEN

Viral proteins fold into a variety of structures as they perform their functions. Structure-based vaccine design aims to exploit knowledge of an antigen's architecture to stabilize it in a vulnerable conformation. We summarize the general principles of structure-based vaccine design, with a focus on the major types of sequence modifications: proline, disulfide, cavity-filling, electrostatic and hydrogen-bond substitution, as well as domain deletion. We then review recent applications of these principles to vaccine-design efforts across five viral families: Coronaviridae, Orthomyxoviridae, Paramyxoviridae, Pneumoviridae, and Filoviridae. Outstanding challenges include continued application of proven design principles to pathogens of interest, as well as development of new strategies for those pathogens that resist traditional techniques.


Asunto(s)
Desarrollo de Vacunas , Proteínas Virales , Vacunas Virales , Coronaviridae , Filoviridae , Humanos , Orthomyxoviridae , Paramyxoviridae , Pneumovirinae , Proteínas Virales/inmunología , Vacunas Virales/inmunología
3.
Nat Protoc ; 16(11): 5339-5356, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1454802

RESUMEN

The severe acute respiratory syndrome coronavirus 2 spike protein is a critical component of coronavirus disease 2019 vaccines and diagnostics and is also a therapeutic target. However, the spike protein is difficult to produce recombinantly because it is a large trimeric class I fusion membrane protein that is metastable and heavily glycosylated. We recently developed a prefusion-stabilized spike variant, termed HexaPro for six stabilizing proline substitutions, that can be expressed with a yield of >30 mg/L in ExpiCHO cells. This protocol describes an optimized workflow for expressing and biophysically characterizing rationally engineered spike proteins in Freestyle 293 and ExpiCHO cell lines. Although we focus on HexaPro, this protocol has been used to purify over a hundred different spike variants in our laboratories. We also provide guidance on expression quality control, long-term storage, and uses in enzyme-linked immunosorbent assays. The entire protocol, from transfection to biophysical characterization, can be completed in 7 d by researchers with basic tissue cell culture and protein purification expertise.


Asunto(s)
Regulación Viral de la Expresión Génica/fisiología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Modelos Moleculares , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA